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A generalized correlation is developed for the viscosity and thermal conductivity of 
isotropic fluids under high pressures (up to 200 MPa) and low temperatures (down 
to 85 K). Two known observations have been taken into consideration in the 
development of the correlation. First, the Alder correction factors for the Enskog 
theory values of transport coefficients obtained from molecular dynamics simula- 
tions for hard sphere fluids are incorporated. The inclusion of these corrections in 
the theory makes it possible to describe correctly the density dependence of the 
hard sphere viscosity and thermal conductivity at high pressures. The hydrody- 
namic "cage" effect, which is manifested in the molecular motions of dense fluid 
systems, is thus correctly accounted for. Second, the generalized Eueken relation, 
which relates the thermal conductivity to the viscosity, is incorporated. As  a 
consequence, an internally consistent correlation is obtained, which can adequately 
predict the behavior of the thermal conductivity from given values of viscosity. 
Tests on simple fluids, such as argon, krypton, etc., show that the correlation is 
valid within a few percent for the entire fluid range where experimental data are 
available for comparison, and also along the vapor-liquid saturation line, with the 
exclusion of the critical region. Furthermore, since the variables appearing in the 
theory are in reduced form, a corresponding states correlation is established for 
isotropic fluids. 

KEY WORDS: viscosity; thermal conductivity; Enskog theory; diffusion coeffi- 
cient; Eucken relation. 

1. I N T R O D U C T I O N  

R e c e n t  d e v e l o p m e n t s  in t h e  c o m p u t e r  s i m u l a t i o n  (e.g. ,  m o l e c u l a r  d y n a m i c s )  

o f  m o d e l  s y s t e m s  in s t a t i s t i c a l  m e c h a n i c s  h a v e  s h e d  m u c h  l i g h t  on  t h e  
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detailed behavior and dynamics of transport processes. One prominent 
example is the work of Alder et al. [1] for hard sphere molecular dynamics. 
Alder et al. have shown that at high densities, the Enskog results for the 
diffusion coefficient, viscosity, and thermal conductivity are inadequate. 
Examination of the trajectories of the hard spheres showed vortex motions at 
medium densities. The now well-known "cage effect" was observed at high 
densities, i.e., each hard sphere is situated in the center of a "cage" formed by 
its neighbors, and its forward motion is deflected at short molecular distances 
to give a backward scattering. This explains the negativity of the velocity 
autocorrelation function at intermediate times, which is present at high 
densities, but not at low densities where no "cage" exists. This high density 
effect is not restricted to hard sphere fluids; in fact, the same phenomenon 
was discovered for Lennard-Jones molecules and diatomic molecules. There- 
fore, the Enskog theory must be revised in order to explain the transport 
behavior of dense fluids. 

One revision of the Enskog theory presented previously is the so-called 
MET (Modified Enskog Theory) of Hanley et al. [2]. This theory is valid Ul~ 
to about twice the critical density for argon and methane. Attempts have been 
made to utilize the Alder hard sphere results in the prediction of real fluid 
properties. In engineering applications, Gotoh [3] has used the corrected 
Enskog diffusion coefficient for polyatomic molecules. Protopapas et al. [4] 
applied the Alder correction factor to the case of liquid metals. Dymond [5] 
made an integral formulation of the effects of Alder's correction and applied 
it to the diffusion coefficient of carbon tetrachloride. Woolf [6] applied it to 
water, and Chandler [7] added rotational contributions for polyatomic 
molecules. Harris [8] discussed Chandler's formulation for the methane 
diffusion coefficient. 

In this paper, we present a general and consistent method of utilizing the 
molecular dynamics results together with the theoretical interrelations among 
the transport properties to predict dense real fluid behavior. The method is 
general, in that wide temperature and pressure ranges are included. The 
resultant correlation is self-consistent, since all three transport properties are 
interrelated through the Stokes-Einstein and Eueken relations. 

In Section 2, we review the Enskog theory for transport properties. In 
Section 3, the diffusion coefficient of argon is predicted based on the 
corrected hard sphere model This is made possible through a temperature 
dependent hard sphere diameter, ds. In Section 4, we calculate the viscosity 
of isotropic fluids via the generalized Stokes-Einstein relation. Close agree- 
ment with extensive experimental data sources is achieved. The thermal 
conductivity is calculated from the generalized Eucken relation in Section 5. 
Comparison with argon, krypton, and xenon data shows validity of the 
method over wide ranges of temperatures and pressures. 
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2. ENSKOG T H E O R Y  

We first review the Enskog equations for transport coefficients. The 
self-diffusion coefficient, De, given by Enskog for dense fluid hard spheres, is 

De = Do/X (1) 

where D o is the dilute gas self-diffusion coefficient, 

Do = 3/8 (pm) -~ (rcmkT)I/Z/Trd2~2 r (2) 

where f~(1,~), is the collision integral, which for hard spheres is unity, x is the 
contact value of the hard sphere radial distribution function ( rd f ) ,  p is the 
molecule number density of the fluid, m is the mass per molecule, k is the 
Boltzmann constant, T is the absolute temperature, and d is the diameter of 
the hard spheres. 

The equation for the Enskog viscosity ne is given by the relation 

~e = ~obp[(bpx) 1 + 0.800 + 0.761 bpx] (3) 

where b is related to the second virial coefficient of hard spheres and is given 
by 

b = 2/3 zrd 3 (4) 

and no is the dilute gas viscosity for hard spheres, 

no = 5/16 (rcmkT)~/2/~rd 2 (5) 

The Enskog thermal conductivity, ~,e, is given by 

hE = Xobp[(bpx) -~ + 1.200 + 0.755 bpx] (6) 

where 3% is the dilute gas thermal conductivity, 

25 ( l r m k T )  1/2 Cv ~ 

= 32m 7rd 2 (7) 

where C~ ~ = (3/2)k. 

3. THE SELF-DIFFUSION COEFFICIENT 

The validity of the Enskog self-diffusion coefficient for dense hard 
sphere fluids has recently been tested by the molecular dynamics simulation 
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of Alder et al. [1]. Equation (1) was found to be inadequate at moderately 
high densities. The "exact" hard sphere self-diffusion coefficient, D, is related 
to the Enskog value, De, by a correction coefficient, CD, which is a function of 
density, 

D = CD- De (8) 

The behavior of Co as a function of density is given in Fig. t. It is seen that at 
low densities (pd 3 ~ 0.2), CD is very close to unity. At intermediate densities 
(0.2 ~ pd37. 0.78), Co reaches 1.34, representing an enhancement of the 
diffusive processes over the Enskog values. At much higher densities 
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Fig. I. Correction factors of the Enskog transport coefficients for hard 
spheres. D, diffusion coefficient; 7, viscosity; )~, thermal conductivity; 
subscript E, Enskog values. (From Alder et at. [113 
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(pd3~ 0.85), C o drops down to values less than unity; e.g., Co = 0.58 at 
pd 3 = 0.943. This is due to the so-called "cage" effect, which was absent from 
the Enskog approach. Therefore, we found that the density variation of the 
self-diffusion coefficient for hard spheres is of a quite complicated nature, 
which cannot be accounted for by the Enskog solution. Since the elucidation 
of Alder's work, the correction factor Co has received wide attention in both 
theoretical and correlational work (Gotoh, [3]). We shall also exploit the 
Alder correction in our correlation here. 

Based on the Alder correction factor, Cn, the hard sphere self-diffusion 
coefficient is now given by 

(kT/Trm) 1/2 
D = Co" De = 3/8 d2px �9 Co (9) 

Alternatively, 

p'D* CD 
4~ - -  (lO) 

(p*D*)o YHs 

where ~ is the packing fraction for hard spheres, 

= r /6  pd 3 (11) 

where o is the number density, and YHs is the internal pressure, 

1 + ~ + ~2 _ ~3 
r.s = ( 1  - ~ ) 3  - 1 ( 1 2 )  

Equation (10) reproduces the molecular dynamics results for hard spheres. 
But real fluids are not composed of hard sphere molecules. To generalize Eq. 
(10) to real fluids, or at least to monatomic and isotropic fluids, we can follow 
either the procedure of Hanley and Cohen [9] in their MET theory to 
require 

y =  TbZ v 6T + Z - 1 (13) 

or adopt the conformal solution theory concept using the hard spheres as 
reference fluid (Frisch and McLaughlin [10]) and represent the real fluid 
behavior by a hypothetical fluid with hard sphere equivalent diameter, dB. 
The basis for such an approach lies in the observation that the velocity 
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autocorrelation functions (vcf), whereby the self-diffusion coefficient is 
derived, show for real fluids the same density variation effects as for hard 
spheres (see, e.g., the Lennard-Jones vcf of Levesque et al. [11], or even the 
diatomic vcfof Evans and Streett [ 12]. Levesque and Verlet [ 13] have shown 
that for the Lennard-Jones fluid, the Alder correction factor improves the 
Enskog values for diffusion coefficient and viscosity. Most simulation results 
for simple molecules show the same "cage" effects at high densities and a 
certain degree of enhancement of the diffusion coefficient at medium densi- 
ties, similar to the hard sphere fluid. 

For the noble gases, the Lennard-Jones potential gives a reasonable 
description at moderate densities and temperatures. To predict the diffusion 
coefficients of argon, we used Eqs. (10), (11), and (12) and compared the 
results with the molecular dynamics results for Lennard-Jones molecules. We 
determined the equivalent hard sphere diamter dB from fitting the MD results 
of Levesque and Verlet [13] and Michels and Trappeniers [14]. The follow- 
ing temperature-dependent equation for dB is obtained: 

1.91 + 1.09857/3 
dB= (14) 

2.10754 + /3 

where/3 = 1/T*, T* = kT/e, and dB is measured in the units of a, with o- the 
Lennard-Jones distance parameter, and e the LJ energy parameter (see Table 
I). With d8 determined from Eq. (14), we calculate ~ and Yns from Eqs. (11) 
and (12), respectively, replacing the diameter d by dB. These values are in 
turn used in Eq. (10) for the calculation of the diffusion coefficient (pD). For 
the dilute state, (pD)o of argon or krypton, Eq. (2) is used with the collision 
integral ~(1,1), evaluated for the LJ potential. The results of such calculation 
for argon are shown in Fig. 2. Both the experimental argon self-diffusion 
coefficient and MD simulation values are shown. It is seen that at high 
densities, Eq. (10), with dB from Eq. (14), gives a good description of the 
self-diffusion coefficient of argon. At low densities, there is an artificial 
"rippling" effect due to the fit; see Eq. (14). Also, the simulation numbers of 
Michels and Trappeniers [14] are not consistent enough (especially in the 
temperature trend of the diffusion coefficient) to give a good resolution of the 

Table I. Potential Parameters 

Substance ~/k (K) a (~) 

Ar 119.80 3.405 
Kr 166.28 3.641 
Xe 230.05 3.968 
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Table II. Self-Diffusion Coefficient of Saturated Liquid Argon ~ 

P (bar) Dtalr X 10 6 m2/s Dexpt • 10 4 m2/s 

90 1.34 22.20 24.30 
100 3.25 30.63 35.40 
110 6.68 41.04 48.00 
120 12.14 54.15 60.60 
130 20.26 72.39 74.50 
140 31.72 100.87 87.20 
150 47.42 149.13 99.80 

a From Naghizadeh and Rice [41]. 

fit (to within 6.5% AAD,  average absolute deviation). The prediction of the 
experimental  self-diffusion coefficient of  argon is given in Table  II.  The  
Levesque and Verlet [13] molecular  dynamics  results were fitted with an 
error of  4.3% AAD.  

We note that  the ratio (pD)/(pD)o is t empera tu re  dependent  as well as 
density dependent.  The  dependence on t empera tu re  is small compared  to the 
density dependence. However,  as will be seen later, this t empera tu re  trend is 
important  in the viscosity prediction, if correct  viscosity variat ion with 
t empera tu re  is to be achieved. 

4. V I S C O S I T Y  

Recall  that  the Enskog viscosity for dense hard sphere fluids is 

] tie = 7o bp + 0.800 + 0.761 bpx (15) 

which is of the form 

n = rt~ + r/c + r/~ (16) 

when Eq. (15) is multiplied through, the first t e rm on the r ight-hand side is 
the kinetic contribution, Ok, the second te rm is the cross contribution ( f rom 
interaction of kinetic and potential  effects), nc, and the third t e rm is the 
potential  contribution, no. Mo and Starl ing [15] have derived an interrelation- 
ship between the self-diffusion coefficient D and the potential  contribution 7/s, 
corresponding to the so-called Stokes-Einstein relation, 

y2 T* 
rl~ = A5 p.D----g (17) 
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where A5 is a constant determined from data, T* is the reduced temperature, 
T* = kT/e, p* is the reduced density, p* = po-3, D* is the reduced 
self-diffusion coefficient, where D = D'o- (~/m) ~/2, Y = (rr/6) Oo "3, and ~g is 
the potential contribution to the viscosity in reduced form. The reduced 
viscosity, ~7", is defined by the relation 

r/* = 26.693 ~7 ( t8)  

where M is molecular weight, and the units used are r/in tzP, Elk in Kelvins, 
and ~r in/1~. To calculate (p'D*) for dense fluids, we can use the corrected 
Alder-Enskog expression, Eq. (10). We need an expression for the quantity 
(pD)o for real dilute gases. We adopt the formula for Lennard-Jones gases 
from Hirschfelder et al. [16] with the second-order Sonine correction, 

T .I/2 1 
(p*D*)o = 0 . 2 1 1 5 6 ~ .  1 - A (19) 

where 

[6C* - 5) z 
A = (20) 

(55 - 12B* + 16A*) 

A*, B*, and C* are given by the following relations: 

A @ = ~-~(2,2)@/~--~(i,1), 

B* = [5~20"2)* - 4f/0'3)*]/~2 (m)* 

C* = f~o.2),/~(t,O, 

(21) 

We note that e and o- are the LJ parameters for the monatomic gases. 
Their values for argon, krypton, and xenon are given in Table I. In Eqs. (19), 
(20), and (21), the collision integrals for the LJ potential tabulated by 
Hirschfelder et al. [16] are used. 

The remaining contributions to the viscosity, r/~ and no, are approximated 
by the formula 

(22) 
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where 

C(Y) = 1 + A6Y + A7 Y2 (23) 

The dilute gas viscosity, ri0* for the Lennard-Jones fluid, is given by the 
relation 

r/* = T .1/2/f~2,2), (24) 

However, it is known that for monatomic gases, Eq. (24) is not accurate 
at high temperatures. A correction factorf(T*) therefore is applied, i.e., 

,7* = T*~/2.  f (T*) /~(2 ,2)*  (25) 

where 

f (T* )  = A1 + A2T* + AsT .2 (26) 

The complete expression for the reduced viscosity, r/*, is then 

y] y2T* 
ri* = rl* 1/C(Y)  + A 4 + A5 p,D------g (27) 

Several points can be noted with respect to Eq. (27). First, it contains all three 
parts of the viscosity, i.e., the kinetic part, ri~', involving the reciprocal 
C-function, the cross part, ri*, involving A 4 Y  , and the potential part, ri~', given 
by the term with coefficient As. Second it utilizes the Stokes-Einstein relation 
to connect the potential part of the viscosity with self-diffusion coefficient via 
Eq. (17). Third, the good results obtained in Sec. 3 for the self-diffusion 
coefficient can now be utilized to obtain the viscosity. This approach makes 
maximum use of the simulation results for dense hard spheres, incorporating 
the vortex effects at high densities, and connects molecular dynamics to the 
theoretical interrelationship as given by the generalized Stokes-Einstein 
equation (17) to forge a complete model for viscosity. 

The constants Ai used for the monatomic fluids were determined from 
fitting Eq. (27) to argon, krypton, and xenon data over wide ranges of 
temperatures and pressures. Their values are given in Table III. It is noted 
that in order to use Eq. (27), the value of density is needed given the 
experimental conditions. Some experiments reported the densities along with 
the temperatures and Pressures, whereby the experimental densities were 
chosen in the correlation. For cases where only temperatures and pressures 
were given, the densities were calculated from an accurate equation of state in 
the form of Gosman et al. [17] (see also, Twu et al. [18]). 
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Figures 3 and 4 show the fit to argon experimental viscosity. Figure 3 
shows three isotherms at 107.7 139.7, and 298 I(. The density range covers 
dilute to dense states near the triple point (p* ~ 0.85). It is seen that the 
calculated values follow the experimental data remarkably well at high 
densities even for the lowest temperature (107.7 K). We note that the reduced 
residual viscosity n* - 7" decreases with increasing temperature at constant 
density, while the diffusivity ratio, (p*D*)/(p*D*)o increases with increasing 
temperature. Since the quantity (p'D*) appears in the denominator of Eq. 
(27), the correct trend is obtained. In Fig. 4, where all the data points used in 
the correlation are shown, similar agreement is evident. 

Table IV exhibits the detailed comparison of the calculated viscosity 
values with data from different experimental sources. For example, the 
comparison with the NBS data for Ar (Haynes [19]) shows an AAD of less 
than 1% for 166 data points covering temperatures from 85 to 298 K and 
pressures from low pressures to 34 MPa. There were 93 data from Michela et 
al. [21], covering pressures from 927 kPa to 201 MPa and temperatures from 
273 to 348 K. Our prediction is within 2.8% AAD. A total of 517 experimen- 
tal data from 14 sources were compared. For most data sources, the 
agreement is within 1-2% AAD. The greatest discrepancy comes from 
Hellemans et al. [27] (5.4% AAD). Agreement with the results of Kestin et 
al. [24, 25], Kestin and Leidenfrost [29], and DiPippo and Kestin [22] is 
generally good (0.5, 0.7, 0.8, and 0.2% AAD for pressures up to 10 MPa and 
temperatures from 293 to 973 K). 

For krypton, predicted viscosities were compared with 72 data points. 
The results were 0.4% AAD agreement with the data of Kestin and Leiden- 
frost [29] (101 kPa to 2.16 MPa, at 293.15 K) and 0.8% agreement with the 
data of Reynes and Thodos [28] (at pressures up to 83 MPa and temperatures 

Table ilL Values of Parameters for Use with Viscosity and Thermal Conductivity Correlations 

i Ai a 

1 0.962387 
2 0.133183 • 10 1 
3 -0.503944 x 10 -3 
4 -0.796386 
5 3.483350 
6 -2.375940 
7 7.424750 
8 0.754815 
9 0.927051 

10 0.381552 
11 -0.321260 x 10 -l 

i 

"See Eqs. (27), (32), and (33.). 
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from 273 to 423 K). The data of DiPippo and Kestin [22] are also well 
predicted (20 points, 1.5% AAD). 

For xenon, the correlation yields 1.2% AAD when compared with the 
experimental viscosity data of Legros and Thomaes [33]. The original 
reported density conditions in the xenon data of Reynes and Thodos [28] were 
not correct (the same densities were reported at different temperatures). A 
correction of their densities was made and the calculation of viscosity agrees 
with the experimental results to with 3.0% AAD. For the results of Boon et al. 
[32], the correlation predicts viscosities with 0.5% AAD. 

5. THERMAL CONDUCTIVITY 

We have shown previously (Mo and Starling [15]) that a generalized 
Eucken relation for the interrelation between the thermal conductivity and 
the viscosity of monatomic fluids is 

15 R 

4 M 
(qk + 71~) + (pD)o (C  ~ - 1.5R) 

5 R 15 R AH 
+ ~ ~ n~ - -~- (nk + r/c) ~ R---T (28) 

where R is the gas constant, Cv ~ is the dilute gas molar heat capacity at 
constant volume, and AH is the enthalpy departure from the ideal state. 

In this section, we make further improvements on Eq. (28) in order to 
predict real gas behavior. First, we define the reduced thermal conductivity 
by the relation 

X* = [19.891 x 10 5 x q e l ( M k ) t r  21 -~X (29) 

where the units of X are cal / (cm �9 s �9 K). Then we require that 

x* = x~ + x~ + xg (30) 

where 

X* + X* = Off + n*) + 1.512 (p*D*)o (Cv ~ - 1.5) (31) 

and 

X~ = Bt (2/3)~/~ ~ - A s  (1/2) (r/~' + r/*)AH* (32) 
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with 

B1 = A9 + Alo T* + AU T*2 (33) 

The parameters Cx, and C~, (which are functions of density) are the 
Alder correction factors for thermal conductivity and voscosity, respectively, 
w]aere the subscript q~ refers to the potential contribution, Cv ~ = Cv~ the 
reduced dilute gas specific heat, and AH* = AH/RT, the reduced enthalpy 
departure. The latter can be calculated from the equation of state (Gosman et 
al. [17]; Twu et al. [18]). The empirical parameters Ai are given in Table 
III. 

Equation (30), (31), and (32) were applied for the calculation of the 
thermal conductivity of argon, krypton, and xenon. Data for argon are 
relatively plentiful. For argon, a total of 643 experimental data points from 
six sources were investigated. The temperature range covers 90 to 1500 K, 
with a pressure range from 101 kPa to 245 MPa. Figure 5 shows the 
comparison of calculated values (continuous curves) with experimental data 
(symbols). It is seen that for the whole reduced density range (0.0-0.8 in p~3), 
the agreement is quite close. For example, there are thermal conductivity 
data for the whole range of densities at T = 298.5 K. The predicted thermal 
conductivities agree with the experimental data very closely for the entire 
density range. 

Table V gives the comparison of the calculated thermal conductivity 
with the experimental values from different data sources for argon, krypton, 
and xenon. The argon data of Michels et al. [34] were fit with 1.8% AAD (for 
110 points). The experimental data of Moszynski and Singh [36] are fit with 
1.9% AAD. The group of data by Hanley et al. [39] are predicted with 8.1% 
AAD. Since their data are along the orthobaric line, the deviation of our 
prediction increases as the critical point (150.86 K) is approached (29% at 
150 K). Therefore, the present correlation is not recommended for conditions 
near the critical point. For krypton and xenon, the overall average absolute 
deviation is about 3%. 

6. CONCLUSIONS 

In this investigation, we have developed a general correlation method for 
the transport properties of monatomic fluids: the self-diffusion coefficient, the 
viscosity, and the thermal conductivity for wide ranges of state conditions. 
There are two important elements of the correlation: (a) the use of the Alder 
correction factors for the values of the Enskog transport coefficients, and (b) 
the generalized Stokes-Einstein and Eucken equations relating the three 
transport properties to one another. As a consequence, an internally consis- 
tent correlation is obtained that is able to predict adequately the behavior of 
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viscosity and thermal conductivity to within a few percent of the experimental 
values. 

The temperature variations of the viscosity and thermal conductivity are 
correctly predicted in this framework. Examination of the experimental 
values of the residual viscosity, Fig. 3, and residual thermal conductivity, Fig. 
5, shows that (OArl/OT)p is negative and (OAX/OT)p is positive, i.e., the change 
in residual viscosity with respect to temperature at constant density is 
negative, while the opposite is true for the residual thermal conductivity. 
Hanley et al..[2] have given a detailed discussion on this point. This behavior 
seems to hold true for all normal fluids. Our theoretical equations (16), (17), 
(22), (30), (31), and (32) are seen to be able to give the correct trends (see 
Figs. 3 and 5). 

The negativity of (0Art/0T)p is obtained because the self-diffusion 
coefficient (p 'D*)  increases with increasing temperature (Fig. 2). Conse- 
quently, rt~ decreases with increasing temperature, according to Eq. (17). The 
(0A~/0T)p behavior is simply due to the coefficient B1 in Eq. (33). 

In our correlation, we have not used the experimental data near the 
critical point. Thus our theory is not to be applied in the critical region. 
Examination of the self-diffusion coefficient and thermal conductivity shows 
that there is an abrupt change in the trend of the experimental values close to 
the critical point (see, e.g., Fig. 2). The source of this behavior is not clear. 

One point of interest in the behavior of the residual viscosity (Fig. 4) is 
that at high densities the isotherms show a crossover pattern. This is clearly 
due to the temperature effect. One cannot treat the high density data with one 
temperature-independent curve. Our theory is able to distinguish the individ- 
ual isotherms (Fig. 3). A plot like Fig. 4 is also good in discriminating data 
sources in a consistency test with other data sources. 
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