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Correlation of the Transport Properties of Simple
Fluids at Low Temperatures and High Pressures Based
on the Generalized Eucken Relation and the Molecular
Dynamics of Hard Sphere Fluid

T. H. Chung,’' L. L. Lee,' and K. E. Starling'
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A generalized correlation is developed for the viscosity and thermal conductivity of
isotropic fluids under high pressures (up to 200 MPa) and low temperatures (down
to 85 K). Two known observations have been taken into consideration in the
development of the correlation. First, the Alder correction factors for the Enskog
theory values of transport coefficients obtained from molecular dynamics simula-
tions for hard sphere fluids are incorporated. The inclusion of these corrections in
the theory makes it possible to describe correctly the density dependence of the
hard sphere viscosity and thermal conductivity at high pressures. The hydrody-
namic “cage” effect, which is manifested in the molecular motions of dense fluid
systems, is thus correctly accounted for. Second, the generalized Eucken relation,
which relates the thermal conductivity to the viscosity, is incorporated. As a
consequence, an internally consistent correlation is obtained, which can adequately
predict the behavior of the thermal conductivity from given values of viscosity.
Tests on simple fluids, such as argon, krypton, etc., show that the correlation is
valid within a few percent for the entire fluid range where experimental data are
available for comparison, and also along the vapor-liquid saturation line, with the
exclusion of the critical region. Furthermore, since the variables appearing in the
theory are in reduced form, a corresponding states correlation is established for
isotropic fluids.

KEY WORDS: viscosity; thermal conductivity; Enskog theory; diffusion coeffi-
cient; Eucken relation.

1. INTRODUCTION

Recent developments in the computer simulation (e.g., molecular dynamics)
of model systems in statistical mechanics have shed much light on the
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detailed behavior and dynamics of transport processes. One prominent
example is the work of Alder et al. {1] for hard sphere molecular dynamics.
Alder et al. have shown that at high densities, the Enskog results for the
diffusion coefficient, viscosity, and thermal conductivity are inadequate.
Examination of the trajectories of the hard spheres showed vortex motions at
medium densities. The now well-known “cage effect” was observed at high
densities, i.e., each hard sphere is situated in the center of a “cage” formed by
its neighbors, and its forward motion is deflected at short molecular distances
to give a backward scattering. This explains the negativity of the velocity
autocorrelation function at intermediate times, which is present at high
densities, but not at low densities where no “cage” exists. This high density
effect is not restricted to hard sphere fluids; in fact, the same phenomenon
was discovered for Lennard-Jones molecules and diatomic molecules. There-
fore, the Enskog theory must be revised in order to explain the transport
behavior of dense fluids.

One revision of the Enskog theory presented previously is the so-called
MET (Modified Enskog Theory) of Hanley et al. [2]. This theory is valid up
to about twice the critical density for argon and methane. Attempts have been
made to utilize the Alder hard sphere results in the prediction of real fluid
properties. In engineering applications, Gotoh [3] has used the corrected
Enskog diffusion coefficient for polyatomic molecules. Protopapas et al. [4]
applied the Alder correction factor to the case of liquid metals. Dymond [5]
made an integral formulation of the effects of Alder’s correction and applied
it to the diffusion coefficient of carbon tetrachloride. Woolf [6] applied it to
water, and Chandler [7] added rotational contributions for polyatomic
molecules. Harris [8] discussed Chandler’s formulation for the methane
diffusion coefficient.

In this paper, we present a general and consistent method of utilizing the
molecular dynamics results together with the theoretical interrelations among
the transport properties to predict dense real fluid behavior. The method is
general, in that wide temperature and pressure ranges are included. The
resultant correlation is self-consistent, since all three transport properties are
interrelated through the Stokes-Einstein and Eucken relations.

In Section 2, we review the Enskog theory for transport properties. In
Section 3, the diffusion coefficient of argon is predicted based on the
corrected hard sphere model. This is made possible through a temperature
dependent hard sphere diameter, dg. In Section 4, we calculate the viscosity
of isotropic fluids via the generalized Stokes—Einstein relation. Close agree-
ment with extensive experimental data sources is achieved. The thermal
conductivity is calculated from the generalized Eucken relation in Section 5.
Comparison with argon, krypton, and xenon data shows validity of the
method over wide ranges of temperatures and pressures.
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2. ENSKOG THEORY

We first review the Enskog equations for transport coefficients. The
self-diffusion coefficient, Dy, given by Enskog for dense fluid hard spheres, is

Dg = DO/X (1)
where D, is the dilute gas self-diffusion coefficient,
Do = 3/8 (pm)~" (wmkT)'* [xd QD% @)

where QV* is the collision integral, which for hard spheres is unity, x is the
contact value of the hard sphere radial distribution function (rdf), p is the
molecule number density of the fluid, m» is the mass per molecule, k& is the
Boltzmann constant, T is the absolute temperature, and d is the diameter of
the hard spheres.

The equation for the Enskog viscosity . is given by the relation

ng = nobp[(bpx) ™" + 0.800 + 0.761 bpx] 3)

where b is related to the second virial coefficient of hard spheres and is given
by

b=2/3=d’ (4)
and 7, is the dilute gas viscosity for hard spheres,
N = 5/16 (wmkT)'*/xd* , &)
The Enskog thermal conductivity, Ag, is given by
Mg = Aobp[(bpx)™" + 1.200 + 0.755 bpx] 6)
where A, is the dilute gas thermal conductivity,

25 (z#mkT)'*C?
32m wd?

N = (M)

where C,° = (3/2)k.

3. THE SELF-DIFFUSION COEFFICIENT

The validity of the Enskog self-diffusion coefficient for dense hard
sphere fluids has recently been tested by the molecular dynamics simulation
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of Alder et al. [1]. Equation (1) was found to be inadequate at moderately
high densities. The “exact” hard sphere self-diffusion coefficient, D, is related
to the Enskog value, Dy, by a correction coefficient, C,, which is a function of
density,

D=Cy- Dy (8)

The behavior of C,, as a function of density is given in Fig. 1. It is seen that at
low densities (pd® = 0.2), C, is very close to unity. At intermediate densities
(0.2 = pd® = 0.78), C, reaches 1.34, representing an enhancement of the
diffusive processes over the Enskog values. At much higher densities
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Fig. 1. Correction factors of the Enskog transport coefficients for hard
spheres. D, diffusion coefficient; 5, viscosity; A, thermal conductivity;
subscript E, Enskog values. (From Alder et al. {1].)
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(pd® = 0.85), Cp, drops down to values less than unity; e.g., C, = 0.58 at
pd?® = 0.943. This is due to the so-called “cage” effect, which was absent from
the Enskog approach. Therefore, we found that the density variation of the
self-diffusion coefficient for hard spheres is of a quite complicated nature,
which cannot be accounted for by the Enskog solution. Since the elucidation
of Alder’s work, the correction factor C,, has received wide attention in both
theoretical and correlational work (Gotoh, [3]). We shall also exploit the
Alder correction in our correlation here.

Based on the Alder correction factor, C,, the hard sphere self-diffusion
coefficient is now given by

D=CD-DE=3/8£—](——Z%—?E.CD ©)
Alternatively,
PO e (10)
- (p*D*)o Yis
where £ is the packing fraction for hard spheres,
£= /6 pd’ (11)

where p is the number density, and Y is the internal pressure,

1+E+ -8

Vs =gy

~1 (12)

Equation (10) reproduces the molecular dynamics results for hard spheres.
But real fluids are not composed of hard sphere molecules. To generalize Eq.
(10) to real fluids, or at least to monatomic and isotropic fluids, we can follow
either the procedure of Hanley and Cohen [9] in their MET theory to
require

0Z
Y=-T_ zZ -1
5T v+ (13)

or adopt the conformal solution theory concept using the hard spheres as
reference fluid (Frisch and McLaughlin [10]) and represent the real fluid
behavior by a hypothetical fluid with hard sphere equivalent diameter, d,.
The basis for such an approach lies in the observation that the velocity



402 Chung, Lee, and Starling

autocorrelation functions (vef), whereby the self-diffusion coefficient is
derived, show for real fluids the same density variation effects as for hard
spheres (see, e.g., the Lennard-Jones vef of Levesque et al. [11], or even the
diatomic vef of Evans and Streett [12]. Levesque and Verlet [13] have shown
that for the Lennard-Jones fluid, the Alder correction factor improves the
Enskog values for diffusion coefficient and viscosity. Most simulation results
for simple molecules show the same “cage” effects at high densities and a
certain degree of enhancement of the diffusion coefficient at medium densi-
ties, similar to the hard sphere fluid.

For the noble gases, the Lennard-Jones potential gives a reasonable
description at moderate densities and temperatures. To predict the diffusion
coefficients of argon, we used Eqgs. (10), (11), and (12) and compared the
results with the molecular dynamics results for Lennard-Jones molecules. We
determined the equivalent hard sphere diamter d, from fitting the M D results
of Levesque and Verlet [13] and Michels and Trappeniers [14]. The follow-
ing temperature-dependent equation for djp is obtained:

191 + 1.098578

s = 2.10754 + B (14)
where 8 = 1/T*, T* = kT /¢, and dp is measured in the units of o, with ¢ the
Lennard-Jones distance parameter, and ¢ the LJ energy parameter (see Table
I). With dj determined from Eq. (14), we calculate £ and Y from Eqgs. (11)
and (12), respectively, replacing the diameter d by dp. These values are in
turn used in Eq. (10) for the calculation of the diffusion coefficient (pD). For
the dilute state, (pD), of argon or krypton, Eq. (2) is used with the collision
integral Q"V* evaluated for the LJ potential. The results of such calculation
for argon are shown in Fig. 2. Both the experimental argon self-diffusion
coefficient and MD simulation values are shown. It is seen that at high
densities, Eq. (10), with d from Eq. (14), gives a good description of the
self-diffusion coefficient of argon. At low densities, there is an artificial
“rippling” effect due to the fit; see Eq. (14). Also, the simulation numbers of
Michels and Trappeniers [14] are not consistent enough (especially in the
temperature trend of the diffusion coefficient) to give a good resolution of the

Table I. Potential Parameters

Substance e/k (K) a(A)
Ar 119.80 3.405
Kr 166.28 3.641

Xe 230.05 3.968
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Table II. Self-Diffusion Coefficient of Saturated Liquid Argon”

T (X) P (bar) Dee x 10°m?/s D x 10°m’/s

90 1.34 22.20 24,30
100 3.25 30.63 35.40
110 6.68 41.04 48.00
120 12.14 54.15 60.60
130 20.26 72.39 74.50
140 31.72 100.87 87.20
150 47.42 149.13 99.80

“From Naghizadeh and Rice [41].

fit (to within 6.5% AAD, average absolute deviation). The prediction of the
experimental self-diffusion coefficient of argon is given in Table II. The
Levesque and Verlet [13] molecular dynamics results were fitted with an
error of 4.3% AAD.

We note that the ratio (0D)/(pD), is temperature dependent as well as
density dependent. The dependence on temperature is small compared to the
density dependence. However, as will be seen later, this temperature trend is
important in the viscosity prediction, if correct viscosity variation with
temperature is to be achieved.

4. VISCOSITY

Recall that the Enskog viscosity for dense hard sphere fluids is

1
g = Mo bp |[s— + 0.800 + 0.761 bpx (15)
bpx

which is of the form

n=n+ N+ M (16)

when Eq. (15) is multiplied through, the first term on the right-hand side is
the kinetic contribution, 7,, the second term is the cross contribution (from
interaction of kinetic and potential effects), ., and the third term is the
potential contribution, n,. Mo and Starling [15] have derived an interrelation-
ship between the self-diffusion coefficient D and the potential contribution 7,
corresponding to the so-called Stokes-Einstein relation,

Yr*
= As;*,ﬁ am
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where A; is a constant determined from data, T* is the reduced temperature,
T* = kT]/e, p* is the reduced density, p* = po’, D* is the reduced
self-diffusion coefficient, where D = D*¢ (¢/m)'/%, Y = (x/6) po®, and n¥ is
the potential contribution to the viscosity in reduced form. The reduced
viscosity, #*, is defined by the relation

vMe/k

6'2

~1
7* = [26.693 n (18)

where M is molecular weight, and the units used are # in up, ¢/k in Kelvins,
and ¢ in A. To calculate (p*D*) for dense fluids, we can use the corrected
Alder-Enskog expression, Eq. (10). We need an expression for the quantity
(pD), for real dilute gases. We adopt the formula for Lennard-Jones gases
from Hirschfelder et al. [16] with the second-order Sonine correction,

%1/2 1

T
(p*D*)O =0.21156 W . m (19)

where

~ [6C* — 5)?
(55 — 12B* + 164%)

(20)

A*, B*, and C* are given by the following relations:

A% = Q(Z‘Z)*/Q(Ll)*
B* = {59(1,2)* - 49{23)*]/9(1,1)* (21)
C* - Q(LZ)*/Q(M)*

We note that ¢ and ¢ are the LJ parameters for the monatomic gases.
Their values for argon, krypton, and xenon are given in Table I, In Egs. (19),
(20), and (21), the collision integrals for the LJ potential tabulated by
Hirschfelder et al. [16] are used.

The remaining contributions to the viscosity, n, and 5., are approximated
by the formula

1
nE 4+ ¥ - i [‘6675 + A Y} 22)
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where

CY) =1+ AY + A, Y? (23)

The dilute gas viscosity, 5§ for the Lennard-Jones fluid, is given by the
relation

5 = T/ 909 24

However, it is known that for monatomic gases, Eq. (24) is not accurate
at high temperatures. A correction factor f(7%) therefore is applied, i.e.,

wf = TH - f(T%) /900 (25)

where

AT*) = A, + A, T* + A, T (26)
The complete expression for the reduced viscosity, n*, is then

Y2T*

D% 27)

e [I/C(Y) + A, Y] + A

Several points can be noted with respect to Eq. (27). First, it contains all three
parts of the viscosity, i.e., the kinetic part, nf, involving the reciprocal
C-function, the cross part, n¥, involving A4,Y, and the potential part, 5}, given
by the term with coefficient As. Second it utilizes the Stokes—Einstein relation
to connect the potential part of the viscosity with self-diffusion coefficient via
Eq. (17). Third, the good results obtained in Sec. 3 for the self-diffusion
coefficient can now be utilized to obtain the viscosity. This approach makes
maximum use of the simulation results for dense hard spheres, incorporating
the vortex effects at high densities, and connects molecular dynamics to the
theoretical interrelationship as given by the generalized Stokes-Einstein
equation (17) to forge a complete model for viscosity.

The constants 4, used for the monatomic fluids were determined from
fitting Eq. (27) to argon, krypton, and xenon data over wide ranges of
temperatures and pressures. Their values are given in Table IIL. It is noted
that in order to use Eq. (27), the value of density is needed given the
experimental conditions. Some experiments reported the densities along with
the temperatures and pressures, whereby the experimental densities were
chosen in the correlation. For cases where only temperatures and pressures
were given, the densities were calculated from an accurate equation of state in
the form of Gosman et al. [17] (see also, Twu et al. [18]).
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Figures 3 and 4 show the fit to argon experimental viscosity. Figure 3
shows three isotherms at 107.7 139.7, and 298 K. The density range covers
dilute to dense states near the triple point (p* = 0.85). It is seen that the
calculated values follow the experimental data remarkably well at high
densities even for the lowest temperature (107.7 K). We note that the reduced
residual viscosity n* — n& decreases with increasing temperature at constant
density, while the diffusivity ratio, (p*D¥)/(p*D¥*), increases with increasing
temperature. Since the quantity (p*D*) appears in the denominator of Eq.
(27), the correct trend is obtained. In Fig. 4, where all the data points used in
the correlation are shown, similar agreement is evident.

Table 1V exhibits the detailed comparison of the calculated viscosity
values with data from different experimental sources. For example, the
comparison with the NBS data for Ar (Haynes [19]) shows an AAD of less
than 1% for 166 data points covering temperatures from 85 to 298 K and
pressures from low pressures to 34 MPa. There were 93 data from Michela et
al. [21], covering pressures from 927 kPa to 201 MPa and temperatures from
273 to 348 K. Our prediction is within 2.8% AAD. A total of 517 experimen-
tal data from 14 sources were compared. For most data sources, the
agreement is within 1-2% AAD. The greatest discrepancy comes from
Hellemans et al. [27] (5.4% AAD). Agreement with the results of Kestin et
al. [24, 25], Kestin and Leidenfrost [29], and DiPippo and Kestin [22] is
generally good (0.5, 0.7, 0.8, and 0.2% AAD for pressures up to 10 MPa and
temperatures from 293 to 973 K).

For krypton, predicted viscosities were compared with 72 data points.
The results were 0.4% AAD agreement with the data of Kestin and Leiden-
frost [29] (101 kPa to 2.16 MPa, at 293.15 K) and 0.8% agreement with the
data of Reynes and Thodos [28] (at pressures up to 83 MPa and temperatures

Table III. Values of Parameters for Use with Viscosity and Thermal Conductivity Correlations

~.

Af

0.962387
0.133183 x 10~
~0.503944 x 1073
—0.796386
3.483350
—2.375940
7.424750
0.754815
0.927051
0.381552
-0.321260 x 107!

— O D00 N1 AN R W N e

——

“See Eqgs. (27), (32), and (33.).
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from 273 to 423 K). The data of DiPippo and Kestin [22] are also well
predicted (20 points, 1.5% AAD).

For xenon, the correlation yields 1.2% AAD when compared with the
experimental viscosity data of Legros and Thomaes [33]. The original
reported density conditions in the xenon data of Reynes and Thodos [28] were
not correct (the same densities were reported at different temperatures). A
correction of their densities was made and the calculation of viscosity agrees
with the experimental results to with 3.0% AAD. For the results of Boon et al.
[32], the correlation predicts viscosities with 0.5% AAD.

5. THERMAL CONDUCTIVITY

We have shown previously (Mo and Starling [15]) that a generalized
Eucken relation for the interrelation between the thermal conductivity and
the viscosity of monatomic fluids is

15 R
-7 M)+ (pD)o(C? — 1.5R)
5R 15 R AH
+5ﬁﬂ¢*‘é‘(ﬂk+’7c)ﬁR—T (28)

where R is the gas constant, C,° is the dilute gas molar heat capacity at
constant volume, and AH is the enthalpy departure from the ideal state.

In this section, we make further improvements on Eq. (28) in order to
predict real gas behavior. First, we define the reduced thermal conductivity
by the relation

A = [19.891 x 107° x ve/(MK)o2] ~' A (29)

where the units of X are cal/(cm - s - K). Then we require that

AN = NN N (30)
where
N+ NF = (nf + 1¥) + 1.512 (p*D*), (C2* — 1.5) 31)
and
C>\¢

A =B, (2/3)ng o ~As (1/2) (ff + n¥) AH* (32)
n¢
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with
Bl = Ag + AIO T* + A“T*z (33)

The parameters C,, and C,, (which are functions of density) are the
Alder correction factors for thermal conductivity and voscosity, respectively,
where the subscript ¢ refers to the potential contribution, C,** = C,°/R, the
reduced dilute gas specific heat, and AH* = AH/RT, the reduced enthalpy
departure. The latter can be calculated from the equation of state (Gosman et
al. [17]; Twu et al. [18]). The empirical parameters A; are given in Table
I1I.

Equation (30), (31), and (32) were applied for the calculation of the
thermal conductivity of argon, krypton, and xenon. Data for argon are
relatively plentiful. For argon, a total of 643 experimental data points from
six sources were investigated. The temperature range covers 90 to 1500 K,
with a pressure range from 101 kPa to 245 MPa. Figure 5 shows the
comparison of calculated values (continuous curves) with experimental data
(symbols). It is seen that for the whole reduced density range (0.0-0.8 in po*),
the agreement is quite close. For example, there are thermal conductivity
data for the whole range of densities at T = 298.5 K. The predicted thermal
conductivities agree with the experimental data very closely for the entire
density range.

Table V gives the comparison of the calculated thermal conductivity
with the experimental values from different data sources for argon, krypton,
and xenon. The argon data of Michels et al. [34] were fit with 1.8% AAD (for
110 points). The experimental data of Moszynski and Singh [36] are fit with
1.9% AAD. The group of data by Hanley et al. [39] are predicted with 8.1%
AAD. Since their data are along the orthobaric line, the deviation of our
prediction increases as the critical point (150.86 K) is approached (29% at
150 K). Therefore, the present correlation is not recommended for conditions
near the critical point. For krypton and xenon, the overall average absolute
deviation is about 3%.

6. CONCLUSIONS

In this investigation, we have developed a general correlation method for
the transport properties of monatomic fluids: the self-diffusion coefficient, the
viscosity, and the thermal conductivity for wide ranges of state conditions.
There are two important elements of the correlation: (a) the use of the Alder
correction factors for the values of the Enskog transport coefficients, and (b)
the generalized Stokes—Einstein and Eucken equations relating the three
transport properties to one another. As a consequence, an internally consis-
tent correlation is obtained that is able to predict adequately the behavior of
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viscosity and thermal conductivity to within a few percent of the experimental
values.

The temperature variations of the viscosity and thermal conductivity are
correctly predicted in this framework. Examination of the experimental
values of the residual viscosity, Fig. 3, and residual thermal conductivity, Fig.
5, shows that (dAn/dT), is negative and (dAN/8T), is positive, i.c., the change
in residual viscosity with respect to temperature at constant density is
negative, while the opposite is true for the residual thermal conductivity.
Hanley et al. [2] have given a detailed discussion on this point. This behavior
seems to hold true for all normal fluids. Our theoretical equations (16), (17),
(22), (30}, (31), and (32) are seen to be able to give the correct trends (see
Figs. 3 and 5).

The negativity of (dAn/dT), is obtained because the self-diffusion
coefficient (p*D*) increases with increasing temperature (Fig. 2). Conse-
quently, 5} decreases with increasing temperature, according to Eq. (17). The
(dAA/aT), behavior is simply due to the coefficient B, in Eq. (33).

In our correlation, we have not used the experimental data near the
critical point. Thus our theory is not to be applied in the critical region.
Examination of the self-diffusion coefficient and thermal conductivity shows
that there is an abrupt change in the trend of the experimental values close to
the critical point (see, e.g., Fig. 2). The source of this behavior is not clear.

One point of interest in the behavior of the residual viscosity (Fig. 4) is
that at high densities the isotherms show a crossover pattern. This is clearly
due to the temperature effect. One cannot treat the high density data with one
temperature-independent curve. Our theory is able to distinguish the individ-
ual isotherms (Fig. 3). A plot like Fig. 4 is also good in discriminating data
sources in a consistency test with other data sources.
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